JVM warm up by Escape Analysis

Why JVM need warm up

I don’t know how and why you get to this blog. But I know the key words in your mind are “warm” for JVM. As the name “warm up” suggested, and like what you normally do before work out. Warm up means get your body/system ready and tune it to perfect state As for systems running under JVM, if they are time critical and latency sensitive. The best approach to make it run in good state is good preparation.

One feasible strategy for low-latency applications, we need to cache all classes beforehand – so that they’re available instantly when accessed at runtime.

This process of tuning the JVM is known as warming up.

There are multiple tools & approach to implement warm up, while I’m going to dig into one of most important strategy to warm up your application in JVM. That’s EA: Escape Analysis.

Escape Analysis

Java objects are created and stored in the heap. The programming language does not offer the possibility to let the programmer decide if an object should be generated in the stack. But in certain cases it would be desirable to allocate an object on the stack, as the memory allocation on the stack is cheaper than the memory allocation in the heap, deallocation on the stack is free and the stack is efficiently managed by the runtime.

The JVM uses therefore internally escape analysis to check if an object is used only with a thread or method. If the JVM identify this it may decide to create the object on the stack, increasing performance of the Java program.

Escape analysis is a technique by which the Java Hotspot Server Compiler can analyze the scope of a new object’s uses and decide whether to allocate it on the Java heap.

Why EA help to boost application performance in JVM?

As you know, JVM will allocate memory space in different sections. They performs significanlty different, normally heap is slower than stack, which is even slower than CPU registers. So to improve system performance, we’d put our data step away from heap. When your java source code being compiled, JIT will leverage Escape Analysis to allocate space on the method stack or even in CPU registers instead of Java heap space. This is a very important performance optimization because stack allocation and de-allocation are much faster than heap space allocation.

How escape analysis work

Based on escape analysis during JIT, an object’s escape state might be one of the following:

  • GlobalEscape – An object escapes the method and thread. For example, an object stored in a static field, or, stored in a field of an escaped object, or, returned as the result of the current method.
  • ArgEscape – An object passed as an argument or referenced by an argument but does not globally escape during a call. This state is determined by analyzing the bytecode of called method.
  • NoEscape – A scalar replaceable object, meaning its allocation could be removed from generated code.

After escape analysis, the server compiler eliminates scalar replaceable object allocations and associated locks from generated code. The server compiler also eliminates locks for all non-globally escaping objects.

Please beadvised it does not replace a heap allocation with a stack allocation for non-globally escaping objects.

JIT inline optimisation

The JIT aggressively inlines methods, removing the overhead of method calls. Methods that can be inlined include static, private or final methods but also public methods if it can be determined that they are not overridden.

Because of this, subsequent class loading can invalidate the previously generated code. Because inlining every method everywhere would take time and would generate an unreasonably big binary, the JIT compiler inlines the hot methods first until it reaches a threshold. To determine which methods are hot, the JVM keeps counters to see how many times a method is called and how many loop iterations it has executed. This means that inlining happens only after a steady state has been reached, so you need to repeat the operations a certain number of times before there is enough profiling information available for the JIT compiler to do its job.

Rather than trying to guess what the JIT is doing, you can take a peek at what’s happening by turning on java command line flags: -XX:+PrintCompilation -XX:+UnlockDiagnosticVMOptions -XX:+PrintInlining

Here is what they do:

-XX:+PrintCompilation: logs when JIT compilation happens
-XX:+UnlockDiagnosticVMOptions: enables other flags like -XX:+PrintInlining

Improve performance by removing locking

As you konw, Lock would significantely slow down or even freeze your application running in JVM.

During Escape analysis. GlobalEscape and ArgEscape objects must be allocated on the heap, but for ArgEscape objects it is possible to remove some locking and memory synchronization overhead because these objects are only visible from the calling thread.

The NoEscape objects may be allocated freely, for example on the stack instead of on the heap. In fact, under some circumstances, it is not even necessary to construct an object at all, but instead only the object’s scalar values, such as an int for the object Integer. Synchronization may be removed too, because we know that only this thread will use the objects. For example, if we were to use the somewhat ancient StringBuffer (which as opposed to StringBuilder has synchronized methods), then these synchronizations could safely be removed.

EA is currently only available under the C2 HotSpot Compiler so we have to make sure that we run in -server mode.

Why It Matters

In theory, NoEscape objects objects can be allocated on the stack or even in CPU registers using EA, giving very fast execution.

When we allocate objects on the heap, we start to drain our CPU caches because objects are placed on different addresses on the heap possibly far away from each other. This way we will quickly deplete our L1 CPU cache and performance will decrease. With EA and stack allocation on the other hand, we are using memory that (most likely) is already in the L1 cache anyhow. So, EA and stack allocation will improve our localization of data. This is good from a performance standpoint.

Obviously, the garbage collects needs to run much less frequently when we are using EA with stack allocation. This is perhaps the biggest performance advantage. Recall that each time the JVM runs a complete heap scan, we take performance out of our CPUs and the CPU caches will quickly deplete. Not to mention if we have virtual memory paged out on our server, whereby GC is devastating for performance.

The most important advantage of EA is not performance though. EA allows us to use local abstractions like Lambdas, Functions, Streams, Iterators etc. without any significant performance penalty so that we can write better and more readable code. Code that describes what we are doing rather than how it is done.

The GC cleans up the heap and not the stack. The stack is cleaned up automatically when methods return to their caller whereby the stack pointer is reset to its former value. So GC will clean up objects that ended up on the stack before EA/C2 compilation could be performed. The actual instances (or rather their corresponding representations) live on the stack, there are no referenced objects on the stack in the context of EA optimizations.

JIT optimization

Some JIT Compilation Techniques

One of the most common JIT compilation techniques used by Java HotSpot VM is inlining, which is the practice of substituting the body of a method into the places where that method is called. Inlining saves the cost of calling the method; no new stack frames need to be created. By default, Java HotSpot VM will try to inline methods that contain less than 35 bytes of JVM bytecode.

Another common optimization that Java HotSpot VM makes is monomorphic dispatch, which relies on the observed fact that, usually, there aren’t paths through a method that cause an object reference to be of one type most of the time but of another type at other times.

You might think that having different types via different code paths would be ruled out by Java’s static typing, but remember that an instance of a subtype is always a valid instance of a supertype (this principle is known as the Liskov substitution principle, after Barbara Liskov). This situation means that there could be two paths into a method—for example, one that passes an instance of a supertype and one that passes an instance of a subtype—which would be legal by the rules of Java’s static typing (and does occur in practice).

In the usual case (the monomorphic case), however, having different, path-dependent types does not happen. So we know the exact method definitions that will be called when methods are called on the passed object, because we don’t need to check which override is actually being used. This means we can eliminate the overhead of doing virtual method lookup, so the JIT compiler can emit optimized machine code that is often faster than an equivalent C++ call (because in the C++ case, the virtual lookup cannot easily be eliminated). The two Java HotSpot VM compiler modes use different techniques for JIT compilation, and they can output very different machine code for the same Java method. Modern Java applications, however, can usually make use of both compilation modes.

Java HotSpot VM uses many other techniques to optimize the code that JIT compilation produces. Loop optimization, type sharpening, dead-code elimination, and intrinsics are just some of the other ways that Java HotSpot VM tries to optimize code as much as it can. Techniques are frequently layered one on top of another, so that once one optimization has been applied, the compiler might be able to see more optimizations that can be performed.

Compilation Modes

Inside Java HotSpot VM, there are actually two separate JIT compiler modes, which are known as C1 and C2. C1 is used for applications where quick startup and rock-solid optimization are required; GUI applications are often good candidates for this compiler. C2, on the other hand, was originally intended for long-running, predominantly server-side applications. Prior to some of the later Java SE 7 releases, these two modes were available using the -client and -server switches, respectively.

The two compiler modes use different techniques for JIT compilation, and they can output very different machine code for the same Java method. Modern Java applications, however, can usually make use of both compilation modes. To take advantage of this fact, starting with some of the later Java SE 7 releases, a new feature called tiered compilation became available. This feature uses the C1 compiler mode at the start to provide better startup performance. Once the application is properly warmed up, the C2 compiler mode takes over to provide more-aggressive optimizations and, usually, better performance. With the arrival of Java SE 8, tiered compilation is now the default behavior.

Java memory monitoring tools


pemi$ jps | grep Main
50903 Main
pemi$ jmap -histo 50903 | head
 num     #instances         #bytes  class name

----------------------------------------------
   1:            95       42952184  [I
   2:          1079         101120  [C
   3:           485          55272  java.lang.Class
   4:           526          25936  [Ljava.lang.Object;
   5:            13          25664  [B
   6:          1057          25368  java.lang.String
   7:            74           5328  java.lang.reflect.Field

jmap - Memory Map

Tool or Option Description and Usage

Java Mission Control

Java Mission Control (JMC) is a new JDK profiling and diagnostic tools platform for HotSpot JVM. It s a tool suite basic monitoring, managing, and production time profiling and diagnostics with high performance. Java Mission Control minimizes the performance overhead that’s usually an issue with profiling tools. See Java Mission Control.

jcmd utility

The jcmd utility is used to send diagnostic command requests to the JVM, where these requests are useful for controlling Java Flight Recordings. The JFRs are used to troubleshoot and diagnose JVM and Java Applications with flight recording events. See The jcmd Utility.

Java VisualVM

This utility provides a visual interface for viewing detailed information about Java applications while they are running on a Java Virtual Machine. This information can be used in troubleshooting local and remote applications, as well as for profiling local applications. See Java VisualVM.

JConsole utility

This utility is a monitoring tool that is based on Java Management Extensions (JMX). The tool uses the built-in JMX instrumentation in the Java Virtual Machine to provide information about performance and resource consumption of running applications. See JConsole.

jmap utility

This utility can obtain memory map information, including a heap histogram, from a Java process, a core file, or a remote debug server. See The jmap Utility.

jps utility

This utility lists the instrumented Java HotSpot VMs on the target system. The utility is very useful in environments where the VM is embedded, that is, it is started using the JNI Invocation API rather than the java launcher. See The jps Utility.

jstack utility

This utility can obtain Java and native stack information from a Java process. On Oracle Solaris and Linux operating systems the utility can alos get the information from a core file or a remote debug server. See The jstack Utility.

jstat utility

This utility uses the built-in instrumentation in Java to provide information about performance and resource consumption of running applications. The tool can be used when diagnosing performance issues, especially those related to heap sizing and garbage collection. See The jstat Utility.

jstatd daemon

This tool is a Remote Method Invocation (RMI) server application that monitors the creation and termination of instrumented Java Virtual Machines and provides an interface to allow remote monitoring tools to attach to VMs running on the local host. See The jstatd Daemon.

visualgc utility

This utility provides a graphical view of the garbage collection system. As with jstat, it uses the built-in instrumentation of Java HotSpot VM. See The visualgc Tool.

Native tools

Each operating system has native tools and utilities that can be useful for monitoring purposes. For example, the dynamic tracing (DTrace) capability introduced in Oracle Solaris 10 operating system performs advanced monitoring. See Native Operating System Tools.

$ jps
16217 MyApplication
16342 jps

The utility lists the virtual machines for which the user has access rights. This is determined by access-control mechanisms specific to the operating system. On Oracle Solaris operating system, for example, if a non-root user executes the jps utility, then the output is a list of the virtual machines that were started with that user's uid.

In addition to listing the PID, the utility provides options to output the arguments passed to the application's main method, the complete list of VM arguments, and the full package name of the application's main class. The jps utility can also list processes on a remote system if the remote system is running the jstatd daemon.

GC-less Java

Java Development without GC All products developed by Coral Blocks have the very important feature of leaving ZERO garbage behind. Because the latency imposed by the Java Garbage Collector (i.e. GC) is unacceptable for high-performance systems and because it is impossible to turn off the GC, the best option for real-time systems in Java is to not produce any garbage at all so that the GC never kicks in. Imagine a high-performance matching engine operating in the microsecond level, sending and receiving hundreds of thousands messages per second. If at any given time the GC decides to kick in with its 1+ millisecond latencies, the disruption in the system will be huge. Therefore, if you want to develop real-time systems in Java with minimal variance and latency, the best option is to do it right without creating any garbage for the GC.

Warming up, Checking the GC and Sampling

The key to make sure your system is not creating any garbage is to warm up your critical path from start to finish a couple of million times and then check for memory allocation another couple of million times. If it is allocating memory linearly as the number of iterations increases, it is most likely creating garbage and you should use the stack trace

2022

Minium Workable Mvp Vimrc

”—————————————————————- “ 4. User interface “—————————————————————- “ Set X lines to the cursor when moving vertically set scrolloff=0

Linux Tips

Remember, some things have to end for better things to begin.

Back to Top ↑

2021

How to user fire extinguisher

Summary As you know, staff and your safety is paramount. So what if emergency take place, such as fire in office, how to help yourself and your colleagues by...

Deep dive into Kubernetes Client API

Summary To talk to K8s for getting data, there are few approaches. While K8s’ official Java library is the most widely used one. This blog will look into thi...

Whitelabel Error Page

Summary Whitelabel Error Page is the default error page in Spring Boot web app. It provide a more user-friently error page whenever there are any issues when...

Google maps no photos reviews

Summary I found a weird problem of the app Google Maps of my Oppo Android phone. That’s when you search a place in Google map, say “Central Park”, ideally th...

Debts in a nutshell

A debt security represents a debt owed by the issuer to an investor. Here, the investor acts as a lender to the issuer which may be a government, organisatio...

Back to Top ↑

2020

Debug Stuck IntelliJ

What happened to a debug job hanging in IntelliJ (IDEAS) IDE? You may find when you try to debug a class in Intellij but it stuck there and never proceed, e....

Awesome Kotlin

Difference with Scala Kotlin takes the best of Java and Scala, the response times are similar as working with Java natively, which is a considerable advantag...

JVM热身

此文是作者英文原文的翻译文章,英文原文在:http://todzhang.com/posts/2018-06-10-jvm-warm-up/

Mock in kotlin

Argument Matching & Answers For example, you have mocked DOC with call(arg: Int): Intfunction. You want to return 1 if argument is greater than 5 and -1 ...

Mock in kotlin

Argument Matching & Answers For example, you have mocked DOC with call(arg: Int): Intfunction. You want to return 1 if argument is greater than 5 and -1 ...

Curl

Linux Curl command

AOP

The concept of join points as matched by pointcut expressions is central to AOP, and Spring uses the AspectJ pointcut expression language by default.

Micrometer notes

As a general rule it should be possible to use the name as a pivot. Dimensions allow a particular named metric to be sliced to drill down and reason about th...

Awesome SSL certificates and HTTPS

What’s TLS TLS (Transport Layer Security) and its predecessor, SSL (Secure Sockets Layer), are security protocols designed to secure the communication betwee...

JVM warm up by Escape Analysis

Why JVM need warm up I don’t know how and why you get to this blog. But I know the key words in your mind are “warm” for JVM. As the name “warm up” suggested...

Java Concurrent

This blog is about noteworthy pivot points about Java Concurrent Framework Back to Java old days there were wait()/notify() which is error prone, while fr...

Back to Top ↑

2019

Conversations with God

Feelings is the language of the soul. If you want to know what’s true for you about something, look to how your’re feeling about.

Kafka In Spring

Enable Kafka listener annotated endpoints that are created under the covers by a AbstractListenerContainerFactory. To be used on Configuration classes as fol...

Mifid

FX Spot is not covered by the regulation, as it is not considered to be a financial instrument by ESMA, the European Union (EU) regulator. As FX is considere...

Foreign Exchange

currency pairs Direct ccy: means USD is part of currency pair Cross ccy: means ccy wihtout USD, so except NDF, the deal will be split to legs, both with...

Back to Top ↑

2018

Guice

A new type of Juice Put simply, Guice alleviates the need for factories and the use of new in your Java code. Think of Guice’s @Inject as the new new. You wi...

YAML

Key points All YAML files (regardless of their association with Ansible or not) can optionally begin with — and end with …. This is part of the YAML format a...

Sudo in a Nutshell

Sudo in a Nutshell Sudo (su “do”) allows a system administrator to give certain users (or groups of users) the ability to run some (or all) commands as root...

Zoo-keeper

ZK Motto the motto “ZooKeeper: Because Coordinating Distributed Systems is a Zoo.”

Cucumber

Acceptance testing vs unit test It’s sometimes said that unit tests ensure you build the thing right, whereas acceptance tests ensure you build the right thi...

akka framework of scala

philosophy The actor model adopts the philosophy that everything is an actor. This is similar to the everything is an object philosophy used by some object-o...

Apache Camel

Camel’s message model In Camel, there are two abstractions for modeling messages, both of which we’ll cover in this section. org.apache.camel.Message—The ...

JXM

Exporting your beans to JMX The core class in Spring’s JMX framework is the MBeanExporter. This class is responsible for taking your Spring beans and registe...

Solace MQ

Solace PubSub+ It is a message broker that lets you establish event-driven interactions between applications and microservices across hybrid cloud environmen...

Apigee

App deployment, configuration management and orchestration - all from one system. Ansible is powerful IT automation that you can learn quickly.

Ansible

Ansible: What Is It Good For? Ansible is often described as a configuration management tool, and is typically mentioned in the same breath as Chef, Puppet, a...

flexbox

How Flexbox works — explained with big, colorful, animated gifs

KDB

KDB However kdb+ evaluates expressions right-to-left. There are no precedence rules. The reason commonly given for this behaviour is that it is a much simple...

Agile and SCRUM

Key concept In Scrum, a team is cross functional, meaning everyone is needed to take a feature from idea to implementation.

Strategy-Of-Openshift-Releases

Release & Testing Strategy There are various methods for safely releasing changes to Production. Each team must select what is appropriate for their own ...

NodeJs Notes

commands to read files var lineReader = require(‘readline’).createInterface({ input: require(‘fs’).createReadStream(‘C:\dev\node\input\git_reset_files.tx...

CORS :Cross-Origin Resource Sharing

Cross-Origin Request Sharing - CORS (A.K.A. Cross-Domain AJAX request) is an issue that most web developers might encounter, according to Same-Origin-Policy,...

ngrx

Why @Effects? In a simple ngrx/store project without ngrx/effects there is really no good place to put your async calls. Suppose a user clicks on a button or...

iOS programming

View A view is also a responder (UIView is a subclass of UIResponder). This means that a view is subject to user interactions, such as taps and swipes. Thus,...

Back to Top ↑

2017

cloud computering

openshift vs openstack The shoft and direct answer is `OpenShift Origin can run on top of OpenStack. They are complementary projects that work well together....

cloud computering

Concepts Cloud computing is the on-demand demand delivery of compute database storage applications and other IT resources through a cloud services platform v...

Redux

whats @Effects You can almost think of your Effects as special kinds of reducer functions that are meant to be a place for you to put your async calls in suc...

reactive programing

The second advantage to a lazy subscription is that the observable doesn’t hold onto data by default. In the previous example, each event generated by the in...

Container

The Docker project was responsible for popularizing container development in Linux systems. The original project defined a command and service (both named do...

promise vs observiable

The drawback of using Promises is that they’re unable to handle data sources that produce more than one value, like mouse movements or sequences of bytes in ...

JDK source

interface RandomAccess Marker interface used by List implementations to indicate that they support fast (generally constant time) random access. The primary ...

SSH SFTP

Secure FTP SFTP over FTP is the equivalant of HTTPS over HTTP, the security version

AWS Tips

After establishing a SSH session, you can install a default web server by executing sudo yum install httpd -y. To start the web server, type sudo service htt...

Oracle

ORA-12899: Value Too Large for Column

Kindle notes

#《亿级流量网站架构核心技术》目录一览 TCP四层负载均衡 使用Hystrix实现隔离 基于Servlet3实现请求隔离 限流算法 令牌桶算法 漏桶算法 分布式限流 redis+lua实现 Nginx+Lua实现 使用sharding-jdbc分库分表 Disruptor+Redis...

Java Security Notes

Java Security well-behaved: programs should be prevent from consuming too much system resources

R Language

s<-read.csv("C:/Users/xxx/dev/R/IRS/SHH_SCHISHG.csv") # aggregate s2<-table(s$Original.CP) s3<-as.data.frame(s2) # extract by Frequency ordered s3...

SSH and Cryptography

SFTP versus FTPS SS: Secure Shell An increasing number of our customers are looking to move away from standard FTP for transferring data, so we are ofte...

Eclipse notes

How do I remove a plug-in? Run Help > About Eclipse > Installation Details, select the software you no longer want and click Uninstall. (On Macintosh i...

Maven-Notes

Maven philosophy “It is important to note that in the pom.xml file you specify the what and not the how. The pom.xml file can also serve as a documentatio...

Java New IO

Notes JDK 1.0 introduced rudimentary I/O facilities for accessing the file system (to create a directory, remove a file, or perform another task), accessi...

IT-Architect

SOA SOA is a set of design principles for building a suite of interoperable, flexible and reusable services based architecture. top-down and bottom-up a...

Algorithm

This page is about key points about Algorithm

Java-Tricky-Tech-Questions.md

What is the difference between Serializable and Externalizable in Java? In earlier version of Java, reflection was very slow, and so serializaing large ob...

Compare-In-Java

Concepts If you implement Comparable interface and override compareTo() method it must be consistent with equals() method i.e. for equal object by equals(...

Java Collections Misc

Difference between equals and deepEquals of Arrays in Java Arrays.equals() method does not compare recursively if an array contains another array on oth...

HashMap in JDK

Hashmap in JDK Some note worth points about hashmap Lookup process Step# 1: Quickly determine the bucket number in which this element may resid...

Java 8 Tips

This blog is listing key new features introduced in Java 8

Back to Top ↑

2016

Java GC notes

verbose:gc verbose:gc prints right after each gc collection and prints details about each generation memory details. Here is blog on how to read verbose gc

Hash Code Misc

contract of hashCode : Whenever it is invoked on the same object more than once during an execution of a Java application, the hashCode method must consis...

Angulary Misc

Dependency Injection Angular doesn’t automatically know how you want to create instances of your services or the injector to create your service. You must co...

Java new features

JDK Versions JDK 1.5 in 2005 JDK 1.6 in 2006 JDK 1.7 in 2011 JDK 1.8 in 2014 Sun之前风光无限,但是在2010年1月27号被Oracle收购。 在被Oracle收购后对外承诺要回到每2年一个realse的节奏。但是20...

Simpler chronicle of CI(Continuous Integration) “乱弹系列”之持续集成工具

引言 有句话说有人的地方就有江湖,同样,有江湖的地方就有恩怨。在软件行业历史长河(虽然相对于其他行业来说,软件行业的历史实在太短了,但是确是充满了智慧的碰撞也是十分的精彩)中有一些恩怨情愁,分分合合的小故事,比如类似的有,从一套代码发展出来后面由于合同到期就分道扬镳,然后各自发展成独门产品的Sybase DB和微...

浅谈软件单元测试中的“断言” (assert),从石器时代进步到黄金时代。

大家都知道,在软件测试特别是在单元测试时,必用的一个功能就是“断言”(Assert),可能有些人觉得不就一个Assert语句,没啥花头,也有很多人用起来也是懵懵懂懂,认为只要是Assert开头的方法,拿过来就用。一个偶然的机会跟人聊到此功能,觉得还是有必要在此整理一下如何使用以及对“断言”的理解。希望可以帮助大家...

Kubernetes 与 Docker Swarm的对比

Kubernetes 和Docker Swarm 可能是使用最广泛的工具,用于在集群环境中部署容器。但是这两个工具还是有很大的差别。

http methods

RFC origion http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.1.2)

Spark-vs-Storm

The stark difference among Spark and Storm. Although both are claimed to process the streaming data in real time. But Spark processes it as micro-batches; wh...

微服务

可以想像一下,之前的传统应用系统,像是一个大办公室里面,有各个部门,销售部,采购部,财务部。办一件事情效率比较高。但是也有一些弊端,首先,各部门都在一个房间里。

kibana, view layer of elasticsearch

What’s Kibana kibana is an open source data visualization plugin for Elasticsearch. It provides visualization capabilities on top of the content indexed on...

kibana, view layer of elasticsearch

What’s Kibana kibana is an open source data visualization plugin for Elasticsearch. It provides visualization capabilities on top of the content indexed on...

iConnect

UI HTML5, AngularJS, BootStrap, REST API, JSON Backend Hadoop core (HDFS), Hive, HBase, MapReduce, Oozie, Pig, Solr

Data Structure

Binary Tree A binary tree is a tree in which no node can have more than two children. A property of a binary tree that is sometimes important is that th...

Something about authentication

It’s annoying to keep on repeating typing same login and password when you access multiple systems within office or for systems in external Internet. There a...

SQL

Differences between not in, not exists , and left join with null

Github page commands notes

404 error for customized domain (such as godday) 404 There is not a GitHub Pages site here. Go to github master branch for gitpages site, manually add CN...

RenMinBi International

RQFII RQFII stands for Renminbi Qualified Foreign Institutional Investor. RQFII was introduced in 2011 to allow qualified foreign institutional investors to ...

Load Balancing

Concepts LVS means Linux Virtual Server, which is one Linux built-in component.

Python

(‘—–Unexpected error:’, <type ‘exceptions.TypeError’>) datetime.datetime.now()

Microservices vs. SOA

Microservice Services are organized around capabilities, e.g., user interface front-end, recommendation, logistics, billing, etc. Services are small in ...

Java Class Loader

Codecache The maximum size of the code cache is set via the -XX:ReservedCodeCacheSize=N flag (where N is the default just mentioned for the particular com...

Back to Top ↑